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Abstract

The paper studies the expectation of the inspection time in complex aging systems. Under
reasonable assumptions, this problem is equivalent to studying the expectation of the length of
the shortest path in the directed degradation graph of the systems where the parameters are
obtained from experts. The expectation itself being sometimes out of reach, in closed form or
even through Monte Carlo simulations in the case of large systems, we study the bound of Dyer,
Frieze and McDiarmid which provides an interesting upper bound in the case of exponential
transition times between degradation states. On the other hand, we show that this bound does
not hold for Weibull distributions. Another problem is that lower bounds are much more useful
in the context of estimating inspection times before failure. Such a rigourous lower bound is
presented for the case of Weibull distribution with reasonable values of the shape parameter.

1 Introduction

1.1 Problem statement

Consider a complex system whose n degradation states have been identified by experts. Let node 1 represent
the state where the system is considered as new and let node n be the state of unacceptable degradation.
All these states are represented by a Bayesian Network. The system is supposed to possibly evolve from a
degradation state to any neighbor in the corresponding directed graph. The transition time between any
two given states is assumed to follow a Weibull distribution whose parameters are given by experts or are
estimated if the number of observations is sufficiently large. Using Bayesian statistics both informations can
also be merged.

Assume we start with a brand new system. Then, evolution of the system starts in state 1. Maintenance
policies require that the system be inspected before reaching state n, i.e. unacceptable degradation. Such
examples of complex systems have been studied in Corset (2003). The problem posed in this paper is to
provide a lower bound on acceptable inspection times.

1.2 Inspection times and shortest paths

In order to simplify the analysis, we assume that evolution inside the degradation graph proceeds following
the rule that starting from one node i, the system goes to state j minimizing the transition time among
neighbors of state i. Therefore, acceptable inspection times will be the times lower than the shortest path
from state 1 to state n where each edge is weighted by its transition time. In general situations, we thus
may ask for an estimator of the expected length of the shortest path from 1 to n, and a confidence interval
for the expected time path.

This task is in general impossible to achieve because of the hudge number of observations this should
require in practice. The goal of this paper is to propose a lower bound on the expected length of the shortest
path. On the other hand, approximate confidence intervals seem very difficult to obtain.



2 The Dyer-Frieze-McDiarmid inequality for exponential transitions

An important step in the search of good bounds for expectations in combinatorial problems was achieved
by Dyer, Frieze and Mc Diarmid (1986); see also Steele (1997). Their bound is an upper bound to the
expectation of the optimal value. In comparison, the main objective of our work is to obtain a lower bound
but using Dyer-Frieze-McDiarmid’s bound gives a first understanding of the problem.

2.1 Linear programming formulation

The main idea is to convert the problem into an equivalent linear programming problem, when possible.
Many combinatorial optimization problems cannot be transformed in this manner but it is well known that
this is the case for the shortest path problem. Consider the following extended incidence matrix A of the
oriented degradation graph. Its rows are indexed by the nodes of the graph while its columns are indexed
by its edges with an extra column of all ones. In each column indexed by edge (i, j), set the ith component
to -1, the jth component to 1 and set all other entries to zero.

Then, the shortest path problem is equivalent to the linear program

z? = min cTx (1)

s.t. Ax = b

x ≥ 0

where the random vector c contains the transition times for each edge of the graph.

2.2 The case of exponential transition times

We now apply the Dyer-Frieze-McDiarmid bound to our shortest path problem in the case where the transi-
tion times are independent and exponential. In this case, we have E[ci | ci ≥ h] = E[ci] + h. Then, an upper
bound on the expected length of the shortest path is given by the following theorem (Dyer et al (1986)).

Theorem 1 Assume that the random costs ci are independent and satisfy E[ci | ci ≥ h] ≥ E[ci] + αh for
some α ∈]0, 1]. Then for any matrix A ∈ Rn×m and any vector b ∈ Rn, the optimal value z∗ of the general
linear program (1) satisfies

E[z∗] ≤ max
S : #S=n

∑

i∈S
E[ci]xi (2)

for any feasible solution x, i.e. any x satisfying Ax = b.

Corollary 1 Consider problem (1) where the random costs are assumed to be independent and exponentially
distributed and consider the associated deterministic linear program

ζ? = min E[c]Tx (3)

s.t. Ax = b

x ≥ 0

where the random costs are replaced by their expected values. Then the shortest path problem with optimal
value denoted by z∗ satisfies E[z∗] ≤ ζ∗.

An important conclusion of this corollary is that, contrarily to the intuitive idea prescribed by common
practice, replacing the random costs by their expected values cannot help for the problem of finding a lower
bound to the inspection time of the system. A rigourous lower bound will be presented below.



3 A lower bound on the shortest path and inspection times

3.1 The mean residual time to failure for Weibull distributions

Analyzing the proof of the Dyer-Frieze-McDiarmid bound reveals the importance of studying the mean
residual transition times. Here, we recall some results for mean residual times in the case where the variables
have a Weibull distribution.

Proposition 1 Assume that X is Weibull distributed with β ∈ (1, 2). Then, for all h ≥ 0, we have

E[X | X ≥ h] ≤ E[X] + h.

This result will be instrumental in the derivation of the bound.

3.2 A lower bound to the inspection time

In order to derive the lower bound, we need to clarify the behavior of the linear program (1) when subject
to random costs. The presentation follows Dyer et al (1986) and Steele (1997). For any family of n different
columns of A indexed by B which are linearly independent and such that A−1

B b ≥ 0, we can find a feasible
solution x satisfying Ax = b and x ≥ 0 in the following way : xi = 0 for all i 6∈ B and xB = A−1

B b, where xB
is the vector whose components are those of x with indices in B and AB is the matrix whose columns are
those of A whose indices are in B also. We will also sometimes use the notation N = {1, . . . , n} \B.

We then have the following standard result in linear programming theory.

Lemma 1 Let B be a subset of n indices such that A−1
B b ≥ 0. A vector x defined as defined previously with

respect to B will be a solution to program (1) if and only if ci ≥ ctBA
−1
B ai for all i 6∈ B where ai is the ith

column of A.

A subset of indices B such that the columns of AB are linearly independent and A−1
B b ≥ 0 is called a basis

of the linear program. Solving the linear program thus consists of finding an optimal basis characterized by
the property ci ≥ cBA−1

B ai forall i 6∈ B.
The reason for appending the extra column of all ones to the incidence matrix is that the standard

incidence matrix has rank equals to n − 1 when the graph is connected. Thus, any basis for the shortest
path problem must contain this extra column of ones which is easily seen to be orthogonal to any of the
other columns.

Using these definitions, we now present the lower bound to the inspection time in the following theorem.

Theorem 2 Consider the shortest path problem whose linear programming formulation is given by (1) where
the components ci of the cost vector c are independent and follow a Weibull distribution with parameters ηi
and βi, i = 1, . . . , n. Let x be any feasible solution of (1), i.e. satisfying Ax = b and x ≥ 0. Then, the
expectation of the random optimal value z∗ admits the following lower bound

∑

r

pr
∑

i∈Br
E[ci]xi ≤ E[z∗],

where (Br) is the family of all bases for program (1) and for all r, pr is the probability that Br be optimal.

This theorem cannot be used in crude manner. It explicitely requires that all probabilities pr be estimated
which amounts to a usually hudge number in complex cases. The main idea for using this result is to restrict
to the bases which appear most often in the experiments. The following bound appears more tractable in
practice.

Corollary 2 Let x be the solution of the linear program (3) where the costs are replaced by their expected
values, let B be the optimal basis associated with x and let p̂B be a lower bound to the probability that B be
optimal basis in (1) with confidence level 1− α. Then with probability 1− α we have p̂BE[c]tx ≤ E[z∗].

Remark 1 Of course, one can add to p̂BE[c]tx several more terms of the form p̂r
∑
i∈Br E[ci]xi for as

many other bases occuring with nonneglectable probability as we want, using underestimations p̂r of pr for
each new r. This results in sharper lower bounds to the mean inspection time.
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Figure 1: Comparison of the bounds for one hundred problems

4 Simulations results

In this section we present our simulation results. We generate a hundred different shortest path problems
on a graph with 5 vertices and 7 edges. Each of these problems differs by the choice of the shape and scale
parameters controlling the distribution of the cost on each edges. More precisely, for problem i, the cost cj
of edge j follows a Weibull distribution W (ηj(i), βj(i)), where ηj(i) was drawn at random from the normal
distribution N (50, 100) and βj(i) was drawn from a uniform distribution over [1, 2]. For each problem, the
expectation of the optimal cost is computed via Monte Carlo simulations over 1000 samples. In order to
compute our lower bound and following Remark 1, we use all the basis which occured to be optimal for at
least one sample among the thousand samples. The bases are obtained as output of the simplex algorithm.
Note that the only burden is to store these bases which is of course costless: we only take into account
the small number of bases which frequently occur as optimal in the hundred tested samples of the shortest
path problem. Finally, the underestimations p̂r have been chosen as the lower bounds of the respective
confidence intervals for the probabilities pr with risk value α = 5%. The results are given in Figure 1 below.

In most cases, our lower bound is closer than the Dyer-Frieze-McDiarmid (DFM) upper bound to the
expected cost in absolute value. Moreover, in general, the mean relative error between our bound and
the expected value is less than 20% over the hundred generated problems (19.86 % in the displayed example).

This very preliminary experimental results seem to be quite promising, and we plan to try our bound on
real life problems in a short future.
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